Course Code : 316359 #### COMPUTER INTEGRATED MANUFACTURING SYSTEMS Programme Name/s : Mechanical Engineering/ Production Engineering Programme Code : ME/ PG Semester : Sixth Course Title : COMPUTER INTEGRATED MANUFACTURING SYSTEMS Course Code : 316359 #### I. RATIONALE The manufacturing industry has undergone significant transformations in recent years, driven by advances in computer technology, automation, and robotics. As a result, there is a growing need for skilled professionals who can design, implement, and manage computer-integrated manufacturing systems. This course intends to help the students of Mechanical Engineering with a comprehensive understanding of the concepts, techniques, and applications of Computer Integrated Manufacturing. #### II. INDUSTRY/EMPLOYER EXPECTED OUTCOME The aim of this course is to help the students to attain the following industry identified outcome through various teaching learning experiences to: Apply skills related to Computer-Integrated Manufacturing Systems in real-world manufacturing environment. ### III. COURSE LEVEL LEARNING OUTCOMES (COS) Students will be able to achieve & demonstrate the following COs on completion of course based learning - CO1 Interpret the components of CIM architecture for a given application. - CO2 Apply CAD techniques to design simple mechanical parts. - CO3 Apply CAM techniques to optimize machining processes. - CO4 Use different software and hardware in CIM efficiently. - CO5 Develop program to manage robotic / automation system using relevant software. ### IV. TEACHING-LEARNING & ASSESSMENT SCHEME | | Learning Scheme | | | | | | | Assessment Scheme | | | | | | | | | | | | | | |----------------|--|------|----------------------|---|---------------------|------------|---|-------------------|---------|-------------------|-----------|-----------|------|-----|-----|-----|-----------|-----|------------|-----|----------------| | Course
Code | Course Title | Abbr | Course
Category/s | C | ctu
onta
s./W | ict
eek | | NLH | Credits | Paper
Duration | | The | eory | \ | | T | n LL
L | & | Base
Sl | L | Total
Marks | | | / //// | | | | TL | LL | | | | Duration | FA-
TH | SA-
TH | , To | tal | FA- | PR | SA- | PR | SL | | IVIAI KS | | | 15.7 | | | | | | | | , | | Max | Max | Max | Min | Max | Min | Max | Min | Max | Min | ١. | | 316359 | COMPUTER
INTEGRATED
MANUFACTURING
SYSTEMS | CIM | DSE | 4 | - | 2 | - | 6 | 3 | 3 | 30 | 70 | 100 | 40 | 25 | 10 | 25# | 10 | 1.44 | - | 150 | Course Code: 316359 ### **Total IKS Hrs for Sem. : 0 Hrs** Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA - Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination Note : - 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester. - 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester. - 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work. - 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks - 5. 1 credit is equivalent to 30 Notional hrs. - 6. * Self learning hours shall not be reflected in the Time Table. - 7. * Self learning includes micro project / assignment / other activities. #### V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory Learning Outcomes (TLO's) and CO's. | Suggested
Learning
Pedagogies. | |-------|--|---|--| | 1 | TLO 1.1 State the importance of CIM in modern manufacturing. TLO 1.2 Explain the terms production rate, quality, accuracy, repeatability and flexibility related to quality metrics. TLO 1.3 Organize the various components in CIM framework architecture. | Unit - I Introduction to Computer Integrated Manufacturing (CIM) 1.1 Historical development, Definition, concept, and importance of CIM in modern manufacturing 1.2 Current Production Needs- Production rate, Quality, Accuracy, Repeatability, Flexibility 1.3 CIM Architecture and Components- Computer-Aided Design (CAD), Computer Aided Process Planning (CAPP), Computer Aided Manufacturing Control (CAMC), Computer Aided Business Function (CABF) | Lecture Using
Chalk-Board
Video
Demonstrations
Presentations
Case Study | | 2 | TLO 2.1 State the importance of finite element analysis and optimization techniques. TLO 2.2 Distinguish between concurrent and sequential engineering with different parameters. TLO 2.3 Prepare the simple engineering component by using CAD/CAE software. TLO 2.4 Explain the concept of CAPP, CABF, ERP, MRP and their applications in CIM. | Unit - II Computer-Aided Design (CAD) 2.1 Introduction to CAD-Geometric Modelling, Finite Element Analysis and optimization, Overview of CAD-CAE Integration 2.2 Concurrent Engineering (CE) and Sequential Engineering (SE) -Concept, Elements, Advantages, Disadvantages. 2.3 CAD software and systems: Introduction of Software for CAE, Simulation, Automated Drafting, and generation of report 2.4 Logical steps in CAPP, CABF, Enterprise Resource Planning (ERP), Role of ERP in Business, Advantages and applications of ERP Software, Material Resource Planning (MRP), Role of MRP in Business, Advantages and benefits of MRP Software's. | Presentations Lecture Using Chalk-Board Video Demonstrations Site/Industry Visi | | COM | PUTER INTEGRATED MAN | Course Code : 316359 | | | |-------|--|--|---|--| | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory Learning Outcomes (TLO's) and CO's. | Suggested
Learning
Pedagogies. | | | 3 | TLO 3.1 State the importance of CAM in CIM. TLO 3.2 Explain the importance of HMI and SCADA in the Industrial Automation. TLO 3.3 Plan and prepare the sequence of processing steps for an NC machine in CAMC. TLO 3.4 Describe the emerging trends in CAM. | Unit - III Computer-Aided Manufacturing (CAM) 3.1 Introduction to CAM: CAM software and systems, CAM data exchange and compatibility 3.2 Human Machine Interface (HMI) and Supervisory Control and Data Acquisition (SCADA): Introduction, need, benefits and typical applications 3.3 Computer-Aided Manufacturing Control (CAMC): Interfacing Part Program to CNC, Computerized Control Monitoring and Control, Computer Aided Quality Control (CAQC) 3.4 Overview of Emerging Areas: Supply Chain Management (SCM), Digital Manufacturing, Industry Revolution 4.0. | Lecture Using Chalk-Board Presentations Video Demonstrations Site/Industry Visit Case Study | | | 4 | TLO 4.1 Distinguish different network topologies in CIM with sketch. TLO 4.2 Explain the given application of software, network software, and network hardware with its purpose. TLO 4.3 Describe the types of DBMS with their functions. | Unit - IV CIM Networking and Data Base Management System 4.1 CIM Networking: Types of networks and its characteristics, applications, Types of network topologies-star, bus and ring topology 4.2 Component of Networking: Application software for CIM, Network software, and network hardware 4.3 Database Management System (DBMS): Database types (Hierarchical, Network, Relational, Object Oriented), Function of DBMS, Selection of DBMS, Advantages of DBMS. | Lecture Using
Chalk-Board
Presentations
Video
Demonstrations
Site/Industry Visit
Case Study | | | 5 | TLO 5.1 Define automation and robotics and their importance in CIM. TLO 5.2 Make use of automation and robotic elements for given application. TLO 5.3 Distinguish between different types of automation and robots. TLO 5.4 Explain the applications of automation and robotics in CIM. | Unit - V Automation and Robotics 5.1 Automation: Definition, need, principles and benefits, Robotics: Definition, need, basic concepts and benefits 5.2 Elements of Automation, Levels of automation, Components of Robotics-End effectors-grippers and tools, Drive systems, Control systems 5.3 Types of Automation and Robotics -Concept, Definition, need, and elements of Fixed, Programmable, Flexible Automation -Concept and constructional details of Cartesian, Cylindrical, Polar Configuration Robot, Gantry robot, Selective Compliance Articulated Robot Arm (SCARA). 5.4 Advantages, limitations and applications of automation and robotics in CIM | Lecture Using
Chalk-Board
Presentations
Video
Demonstrations
Site/Industry Visit
Case Study | | ## VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES. | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | Sr
No | 3 1 | Number of hrs. | Relevant
COs | |---|----------|---|----------------|-----------------| | LLO 1.1 Convert 3D modeled components into detailed 2D engineering drawings with proper views and projections. LLO 1.2 Use dimensioning and tolerances as per ISO, ASME, or BIS standards. | 1 | *Drawing of simple mechanical parts modeled using the drafting workbench of CAD Software. | 2 | CO1
CO2 | | COMPUTER INTEGRATED MANUFACTURING SYSTEMS Course Code : 316359 | | | | | | | | | | | |---|----------|--|----------------|--------------------------|--|--|--|--|--|--| | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | Sr
No | Laboratory Experiment / Practical Titles /
Tutorial Titles | Number of hrs. | Relevant
COs | | | | | | | | LLO 2.1 Develop orthographic projections (front, top, and side views) and isometric projections for component visualization. LLO 2.2 Apply GD&T principles in technical drawings for accurate part specifications. | 2 | *Development of the simple mechanical part
by using the geometric modeling workbench
(Any 3 D modelling software). | 2 | CO2 | | | | | | | | LLO 3.1 Generate a Bill of Materials (BOM) and properly format the title block. LLO 3.2 Generate automated BOMs from CAD assemblies using built-in tools in software (like SolidWorks, CATIA, AutoCAD, Creo or any suitable software.) | 3 | Generation of Bill of Material (BOM) and other data using CAD Software. | 2 | CO2 | | | | | | | | LLO 4.1 Prepare a process plan for a suitable manufacturing operations (e.g. casting, forming, welding) LLO 4.2 Develop an optimized sequence of operations for manufacturing a selected part using any suitable CAPP software. | 4 | Computer Aided Process Plan for the selected part using various CAPP Software. | 2 | CO1
CO2 | | | | | | | | LLO 5.1 Choose appropriate G and M codes for preparing part on CNC (Turning or Milling) LLO 5.2 Develop a part with simple machining operations (like facing, turning, drilling, etc.) as per given drawing. | 5 | *CNC code for a simple machining operation using a CNC Machine/Trainner/Simulator. | 2 | CO1
CO2
CO3 | | | | | | | | LLO 6.1 Inspect the dimensional accuracy of component using available CAQC software. | 6 | Inspection of the part using available CAQC software. | 2 | CO3 | | | | | | | | LLO 7.1 Select a suitable MRP software for CIM and assembly. LLO 7.2 Prepare report on the real-time data obtained by MRP Software in automated manufacturing. | 7 | MRP (Material Resource Planning) software for CIM and assembly. | 2 | CO1
CO3
CO4 | | | | | | | | LLO 8.1 Prepare a layout using suitable network topology in given situation. LLO 8.2 Connect given computer systems/hardware as per network layout. | 8 | *Layout of network topology and network hardware/network software for given situation. | 2 | CO4 | | | | | | | | LLO 9.1 Simulate the given system component (s) such as conveyors, machining centers, assembly lines using available software. | 9 | *Design simple manufacturing cells (e.g., machining cell, assembly cell) using available CAD software. | 2 | CO1
CO2
CO3
CO5 | | | | | | | | LLO 10.1 Write a simple Ladder Logic program for simple applications. LLO 10.2 Program for simple automation applications. | 10 | *PLC Programming to control a simple automation system. | 2 | CO5 | | | | | | | COMPUTER INTEGRATED MANUFACTURING SYSTEMS Course Code: 316359 | COMPUTER INTEGRATED MANUFA | Course Code : 316359 | | | | |---|----------------------|---|----------------|-----------------| | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | Sr
No | Laboratory Experiment / Practical Titles /
Tutorial Titles | Number of hrs. | Relevant
COs | | LLO 11.1 Select the required hardware components (motors, sensors, Prime controllers) and their functions. LLO 11.2 Program for the simple robot with wrist or arm movements (to move forward, backward, turn, and stop) using motor control commands. | 11 | Programming of a robot to perform simple task. | 2 | CO5 | | LLO 12.1 Prepare a robot program to perform simple tasks by using available Teach Pendant/Offline Programming/Simulation Software. | 12 | *Use Teach Pendent/Offline
Programming/Simulation Software to program
a robotic arm to perform pick and place and
stacking of objects. | 2 | CO1
CO5 | | LLO 13.1 Prepare a detailed report on the elements of an FMS and its computer-controlled automation. LLO 13.2 Arrange a presentation in a group on FMS technology in modern smart factories. | 13 | Elements of FMS and its nature of controlling by computer through Video film/actual demonstration (plant visit). | 2 | CO3
CO5 | | LLO 14.1 Prepare a detailed report on robotic elements, type, configuration, and control mechanisms. LLO 14.2 Arrange a presentation in a group on findings of robotics trends in Industry 4.0 and Smart Manufacturing. | 14 | Various elments of Robotic Systems, types of robots, their configuration, and the nature of controlling by computer through video/actual demonstration (plant visit). | 2 | CO4
CO5 | | LLO 15.1 Select suitable networking peripherals/components to establish network. LLO 15.2 Set up networking of CNC machines, computers and other devices using the relevant method efficiently. | 15 | *Establish networking between CNC Machines, computers and supported peripherals of your Institute to exchange the manufacturing data and produce simple component. | 2 | CO4 | # Note: Out of above suggestive LLOs - using the relevant method efficiently. - '*' Marked Practicals (LLOs) Are mandatory. - Minimum 80% of above list of lab experiment are to be performed. - Judicial mix of LLOs are to be performed to achieve desired outcomes. # VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING): NOT APPLICABLE # VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED | Sr.No | Equipment Name with Broad Specifications | Relevant LLO
Number | |-------|--|------------------------| | 1 | Free / Educational versions of CAD Software (1+20 users) | 1,2,3,4 | | 2 | Free / Educational versions of 3D Modelling software (1+10 users) | 1,2,3,4 | | 3 | Computers minimum 4GB RAM and above | 1,2,3,4,5 | | 4 | Microcontrollers (e.g., Arduino, Raspberry Pi), sensors (e.g., temperature, humidity). | 10,11,12,13 | | 5 | Free / Educational versions software of networking, Robot programming, simulation. | 10,11,12,13,9 | | 6 | Educational programmable robotics arm to manipulate objects. | 10,11,14,15 | | 7 | Free / Educational versions software of networking FMS Simulation Software | 13 | 7,10,12,13,9 | COM | COMPUTER INTEGRATED MANUFACTURING SYSTEMS Course | | | | | | | |-------|--|------------------------|--|--|--|--|--| | Sr.No | Equipment Name with Broad Specifications | Relevant LLO
Number | | | | | | | 8 | CNC Milling 250 with standard accessories and multi controller changing facility with simulated control panel and related software. Training or Productive type-X axis travel - 225 mm, Y axis travel - 150 mm, Z axis travel - 115 mm, with ATC along with essential accessories. | 15 | | | | | | | 9 | Free / Educational versions software of CAM Software (1+20 user) | 4,6,8 | | | | | | | 10 | CNC Turning 250 with standard accessories and multi controller changing facility with simulated control panel and related software. Training or Productive type minimum diameter 25 mm, Length 120 mm with ATC along with essential accessories. | 5,15 | | | | | | | 11 | CNC Simulation software and control pads (CAMLAB CNC Software, MasterCAM/NXCAM/, DONC CNC machine simulator, PRO, SWANSOFT, CAPSMILL and CAPSTURN IN cam software, DONCMILL AND DONCTURN software), CutViewer Turn& Mill, Sinewave Turn& Mill or equivalent simulation software. | 5,15 | | | | | | | 12 | Free / Educational versions software of CAQC software or CMM/other system | . 6 | | | | | | # SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table) Free / Educational versions software of MRP/ERP/CRM/SCM and PLM Software (1+10 | , | , | | | | | | | | |-------|------|---|----------------|-------------------|-------------|-------------|-------------|----------------| | Sr.No | Unit | Unit Title | Aligned
COs | Learning
Hours | R-
Level | U-
Level | A-
Level | Total
Marks | | 1 | I | Introduction to Computer Integrated Manufacturing (CIM) | CO1 | 8 | 4 | 8 | 0 | 12 | | 2 | II | Computer-Aided Design (CAD) | CO2 | 12 | 4 | 10 | 0 | 14 | | 3 | III | Computer-Aided Manufacturing (CAM) | CO3 | 14 | 2 | 6 | 6 | 14 | | 4 | IV | CIM Networking and Data Base
Management System | CO4 | 14 | 4 | 4 | 6 | 14 | | 5 | V | Automation and Robotics | CO5 | 12 | 4 | 6 | 6 | 16 | | | | Grand Total | | 60 | 18 | 34 | 18 | 70 | # X. ASSESSMENT METHODOLOGIES/TOOLS 13 user) ### Formative assessment (Assessment for Learning) Two-unit tests of 30 marks and average of two-unit tests, For laboratory learning 25 Marks ## **Summative Assessment (Assessment of Learning)** End semester assessment of 25 marks for laboratory learning, End semester assessment of 70 marks. ### XI. SUGGESTED COS - POS MATRIX FORM | | | | Progra | amme Outco | mes (POs) | | S
Ou | ogram
Specifi
Itcomo
(PSOs | c
es* | |-------|--|-----------------------------|--|------------------------------|-----------|----------------------------|---------|-------------------------------------|----------| | (COs) | PO-1 Basic
and
Discipline
Specific
Knowledge | PO-2
Problem
Analysis | PO-3
Design/
Development
of Solutions | PO-4
Engineering
Tools | South | PO-6 Project
Management | 1 | PSO- | PSO- | | COMPUT | ER INTEG | Course Code: 316359 | | | | | | | | |--------|----------|---------------------|---|------------|------------------------|---|---|-----|--| | CO1 | 3 | 2 | 3 | , 2' ' , , | · · · · . - | 1 | 1 | / . | | | CO2 | 3 | 2 | 3 | 3 | 1. | 2 | 1 | | | | CO3 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | | | | CO4 | 3 | 2 | 3 | 2 | | 2 | 1 | | | | | | | | | | | | | | CO5 3 2 3 3 Legends :- High:03, Medium:02,Low:01, No Mapping: -*PSOs are to be formulated at institute level # XII. SUGGESTED LEARNING MATERIALS / BOOKS | Sr.No | Author | Title | Publisher with ISBN Number | |-------|--|---|---| | 1 | Rao P N | Computer Aided Manufacturing | McGraw-Hill Education, New Delhi (2010), ISBN-9780074631034 | | 2 | Groover, Mikell P | Automation Production System and Computer Integrated Manufacturing | Pearson Education Ltd. Canada ISBN: 9780130546524 | | 3 | Dr. Sushil Kumar
Chaudhary, Dr. R S Jodoun | Computer Integrated Manufacturing & Computer Aided Manufacturing | Walnut Publication, ISBN: 9391145272 | | 4 | R K Rajput | Robotics and Industrial Automation | S Chand Publishing, ISBN: 9788121929974 | | 5 | Kant S | Principles of Computer-Integrated Manufacturing | Prentice Hall India Learning Private
Limited ISBN-13. 978-8120314764 | | 6 | R. Panneerselvam, P. Senthilkumar, P. Sivasankaran | Computer-Integrated Manufacturing: Automation in Manufacturing | Cengage India Private Limited ISBN: 9353503205 | | 7 | Radhakrishnan P. | CAD/CAM/CIM | New Edge International Publisher,
New Delhi ISBN: 8122439802 | | 8 | Chang, T.C. and Wysk, R. A | Computer-aided manufacturing | Prentice Hall PTR, ISBN-10.
0131429191. | | 9 | Alavudden A,
Venkateshwran N | Computer Integrated Manufacturing | PHI Learning Pvt. Ltd., 2008, ISBN-9788120333451 | | 10 | Waldner J B | CIM: Principles of Computer
Integrated Manufacturing | John Wiley & Sons Inc. UK (1992)
ISBN: 9780471934509 | | 11 | Scheer A W | CIM Computer Integrated Manufacturing Towards the Factory of The Future | Springer-Verlag Berlin and
Heidelberg GmbH & Co. I SBN:
9783642789908 | | 12 | William W. | Flexible Manufacturing Cells and System | Luggen Hall, England Cliffs, New
Jersy, ISBN: 0133217388 | | 13 | Pabla B.S., Adithan M. | CNC Machines | New Age International, New Delhi, ISBN: 8122434266 | # XIII. LEARNING WEBSITES & PORTALS | Sr.No | Link / Portal | Description | |-------|--|--| | 1 | https://www.youtube.com/watch?v=2HbHmdVf6nI | Automation & Control Computer Integrated Manufacturing Trainer | | 2 | http://www.digimat.in/nptel/courses/video/112104289/L02.html | NPTEL Video Course on CIM | | 3 | https://www.youtube.com/watch?v=_zr43Rz0c | How Computer-Integrated Manufacturing is Revolutionizing the Industry? | | 4 | https://www.youtube.com/watch?v=XJjc923jiKk | Introduction of CIM | | 5 | https://www.youtube.com/watch?v=N-QyvP3FqKI | Robotics and Automation | | 6 | https://www.youtube.com/watch?v=66WYARKYz5c | Industry 4.0: Robotics & Automation | | 7 | https://www.youtube.com/@PSDettmerMATC | Robotics & Automation | ### COMPUTER INTEGRATED MANUFACTURING SYSTEMS **Course Code: 316359** | COMI UTER INTEGRATED MANUFACTURING STSTEMS | | Course Coue . 510557 | |--|---|--| | Sr.No | Link / Portal | Description | | 8 | https://www.youtube.com/watch?v=xBLdHyVdYew | Robotic Process Automation (RPA) | | 9 | https://www.youtube.com/watch?v=C-Xljmtfk38 | Robotics and Automation: Revolutionizing Maintenance | | 10 | https://www.youtube.com/watch?v=U2AGLeJBFNg | World's most advanced robotic warehouse | | 11 | https://www.youtube.com/watch?v=3rkqzmAG7G4 | WH FLEX - Flexible Automation System | | 12 | https://www.youtube.com/watch?v=Hx6DXuildSc | Computer Aided Manufacturing (CAM) | | 13 | https://www.youtube.com/watch?v=FdipJNG_vV8 | Computer Aided Manufacturing (CAM) | ### Note: • Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students MSBTE Approval Dt. 04/09/2025 Semester - 6, K Scheme