
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 1 of 31

 WINTER– 18 EXAMINATION

 Subject Name: System Programming Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer
scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the
understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not
applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent
figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may
vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based

on candidate’s understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.

No.

Sub

Q.

N.

Answer Marking Scheme

1 a Attempt any THREE : 12 M

 1 Write two advantages and disadvantages of absolute loader. 4 M

 Ans Advantages:

1 Simplest form of loader
2 Makes maximum core (memory) available for user.

3 One can determine exact location of program in core.
Disadvantages:

1. The programmer has to specify the address to the assembler that where the

program is to be loaded.
2. It is very difficult to relocate in case of multiple subroutines.

3. Programmer has to remember the address of each subroutine and use that
explicitly.

Any 2 Advantages

2 Marks; Any 2
Disadvantages 2
Marks

 2 What is the difference between :

i) Processor and procedure.

ii) Multiprocessing and multiprogramming.

4 M

 Ans i) Processor and Procedure

Processor Procedure

Processor is an element which

processes is an active entity i.e. process

Procedure is a set of instruction which

is used to perform certain task.

Any 2 points of
differentiation 1

Marks each; any
relevant answer

shall be considered

17517

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 2 of 31

Processor understands and interprets

meaning of process

Procedure defines process.

It executes procedures

It generates result after execution.

ii) Multiprocessing and Multiprogramming

Multiprocessing Multiprogramming

It utilizes multiple CPUs It utilizes single CPU.

It permits parallel processing. Context switching takes place.

Multiprocessing refers to

processing of multiple processes at

same time by multiple CPUs.

Multiprogramming keeps several

programs in main memory at the same
time and execute them concurrently

utilizing single CPU

Less time taken to process the jobs More Time taken to process the jobs.

Any 2 points of
differentiation 1

Marks each; any
relevant answer

shall be considered

 3 Describe linear search with suitable example. 4 M

 Ans Linear search is an algorithm in which an element is search in given data structure

in sequential manner. The searching begins from one end and it will check each

element in given data structure for the availability of key element. The algorithms
compare each element with key element. If element exist then it displays location
of element or else appropriate error message will be displayed. Since each element

is checked for availability of desired element this algorithm runs on data structure
which is not sorted. It has best case time complexity as O(1), with average and

worst case time complexity as O(N).
 Advantage:-

 Simple to implement.
 Works efficient on small data structure.

 Disadvantage: -

 Slow in execution.
 As the data structure increases efficiency of algorithm reduces.

Example: Consider the following data structure

Now we want to search element 13 in given data structure, the algorithm search

sequentially as follows:

Description 2

Marks; Example 2
Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 3 of 31

Element 13 Found at 5th location.

 4 Write three tasks of lexical analysis phase of compiler. List databases involved

in it.

4 M

 Ans The three tasks of the lexical analysis phase are:

1. To parse the source program into the basic elements or tokens or lexemes of
the language

2. To build a literal table and an identifier table.
3. To build a uniform symbol table.

Databases used in lexical analysis are:

 Source program

 Terminal table
 Literal table:
 Identifier table:

 Uniform Symbol table

List of 3 task 2
Marks; List of any

4 databases 2
Marks

 b Attempt any ONE : 6 M

 1 What is system software? Write different goals of system software. 6 M

 Ans These are the programs that help in the effective execution of the

application programs and allow the application programmer to focus on the

application to be developed without concerning about the internal detail of the

system.

e.g. Assembler Macro-processor Loader Linker Compiler Editor Interpreter

Operating System

 An assembler is a program that accepts as input an assembly language

program (source) and produces its machine language equivalent (object code).

Compilers are the system programs that accept people-like languages and translate

them into machine language. Loader is system program that prepare machine

language programs for execution. Macro processors allow programmers to use

abbreviation. Operating system and file system allow flexible storing and retrieval of

information. The productivity of each computer is heavily dependent upon the

effectiveness, efficiency and sophistication of the systems programs.

Goal of System software

 To achieve efficient use of available resources.

 To achieve efficient performance of the system.
 To make effective execution of general user program.

 To make available new better facilities.

Description of
System software 3

Marks; Any 3
Goals 1 Mark each

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 4 of 31

 User convenience - provide convenient methods of using a computer system.
 Non-interference - prevent interference in the activities of its user.

 2 What is Macro Instruction? Explain conditional macro with an example. 6 M

 Ans Macro is used to give single line abbreviation to group of lines which are repeatedly

used in program. These statements are combined and kept in macro. Whenever such

single line abbreviation is encountered macro processor expands replaces this

abbreviation with associated group of lines. Macro Processor is a program that lets

you define the code that is reused many times giving it a specific Macro name and

reuse the code by just writing the Macro name only.

Structure of Macro:

MACRO MACRO_NAME

…

MACRO BODY

…

MEND

Conditional Macro Expansion:

Two important macro processor pseudo-ops, AIF and AGO, permit conditional

reordering of the sequence of macro expansion. This allows conditional selection of

the machine instructions that appear in expansions of macro call. AIF is conditional

branch pseudo-o; it performs an arithmetic test and branches only if the tested

condition is true. The AGO is an unconditional branch pseudo ops or „go to‟

statement. It specifies a label appearing on some other statement in the macro

instruction definition; the macro processor continues sequential processing of

instruction with the indicated statement. These statements are directives to the macro

processor and do not appear in macro expansion.

Example :

Consider the following program. .

Macro Instruction
explanation: 2

Marks; Example 1
Mark

Conditional Macro
2 Marks; Example

1 Mark

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 5 of 31

2 Attempt any TWO : 16 M

 1 Draw and explain the use of database by assembler passes. 8 M

 Ans Pass 1 data bases:

1 Input source program.
2 A Location Counter (LC), used to keep track of each instruction's location.
3 A table, the Machine-Operation Table (MOT) that indicates the symbolic

mnemonic for each instruction and its length (two, four, or six bytes).

Pass 1 database

any 4 ,1 Mark
each;

Pass 2 database
any 4, 1 Mark each

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 6 of 31

4 A table, the Pseudo-Operation Table (POT) that indicates the symbolic

mnemonic and action to be taken for each pseudo-op in pass 1.

5 A table, the Symbol Table (ST) that is used to store each label and its

corresponding value.

6 A table, the Literal Table (LT), that is used to store each literal encountered

and its corresponding assigned location.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 7 of 31

7 A copy of the input to be used later by passes 2. This may be stored in a

secondary storage device, such as magnetic tape, disk, or drum, or the
original source deck may be read by the assembler a second time for pass 2.

Pass 2 data bases:

1 Copy of source program.
2 A Location Counter (LC), used to keep track of each instruction's location.

3 A table, the Machine Operation Table (MOT), that indicates for each
instruction: (a) symbolic mnemonic; (b) length; (c) binary machine op-code,

and (d) format (e.g., RS, RX, SI).
4 A table, the Pseudo-Operation Table (POT), which indicates for each

pseudo-op the symbolic mnemonic and the action to be taken in pass 2.

5 The Symbol Table (ST), prepared by pass 1, containing each label and its
corresponding value.

6 A table, the Base Table (BT), that indicates which registers are currently
specified as base registers by USING pseudo-ops and what are the specified
contents of these registers.

7 A work-space, INST, that is used to hold each instruction as its various parts

(e.g., binary op-code, register fields, length fields, displacement fields) are
being assembled together.

8 A workspace, PRINT LINE, used to produce a printed listing.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 8 of 31

9 A workspace, PUNCH CARD, used prior to actual outputting for con-verting
the assembled instructions into the format needed by the loader.

10 An output deck of assembled instructions in the format needed by the loader.
Output in machine code to be needed by the loader.

 2 Draw the basic phases of compiler and explain each phase functions. 8 M

 Ans

1. Lexical analysis– Recognition of basic elements of creation of uniform symbols.

2. Syntax analysis–Recognition of basic syntactic constructs through reductions.

3. Interpretation– Definition of exact meaning, creation of matrix and tables by

action routines.

4. Machine Independent Optimization– Creation of more optimal matrix.

5. Storage Assignment–Modification of identifier and literal tables. If makes entries

in the matrix that allow code generation to create code that allocates dynamic

storage and that also allow the assembly phases to reserve the proper amounts of

STATIC storage.

6. Code Generation– Use of macro processor to produce more optimal assembly

code.

7. Assembly And Output– Resolving symbolic addresses and generating machine

language.

Diagram 5 Marks;

Description of all

phases 3 Marks

Any relevant
diagram with
names of all passes

shall be considered

 3 Explain the working of address calculation sort with suitable example. 8 M

 Ans Address Calculation Sort (Hashing)

 This Sorting technique can be one of the fastest types of sorts if enough

Description 4
Marks; Example 4

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 9 of 31

storage space is available. The sorting is done by transforming the key into an

address in the table that “represents” the key.

In this method a function f is applied to each key. The result of this function

determines into which of the several sub file the record is to be placed.

The function should have the property that: if x <= y , f (x) <= f (y), Such a function

is called order preserving. An item is placed into a sub file in correct sequence by

placing sorting method – simple insertion is often used.

Example:

 25 57 48 37 12 92 86 33

Let us create 10 sub files. Initially each of these sub files is empty. An array of

pointer f(10) is declared, where f(i) refers to the first element in the file, whose first

digit is i. The number is passed to hash function, which returns its last digit (ten’s

place digit), which is placed at that position only, in the array of pointers.

num= 25 – f(25) gives 2

 57 – f(57) gives 5

 48 – f(48) gives 4

 37 – f(37) gives 3

 12 – f(12) gives 1

 92 – f(92) gives 9

 86 – f(86) gives 8

 33 – f(33) gives 3 which is repeated.

Thus it is inserted in 3rd sub file (4th) only, but must be checked with the existing

elements for its proper position in this sub file.

OR

Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 10 of 31

3 Attempt any FOUR : 16 M

 1 Describe the machine structure. 4 M

 Ans

System consists of an instruction interpreter, a location counter, an instruction

register and various working register and general registers.

The Instruction interpreter is a group of electrical circuits (hardware), that performs

the intent of instructions fetch from memory.

The Location Counter (LC), also called Program Counter (PC) or Instruction

Counter (IC), is a hardware memory device which denotes the location of the current

instruction being executed.

Diagram: 2 marks,

Description:2
marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 11 of 31

A copy of current instruction is stored in the Instruction Register (IR).

The Working Registers are memory devices that serve as “scratch pads” for
instruction interpreter, while the General Registers are used by the programmer as
storage locations and for special function.

 The primary interface between the memory and the CPU is via the Memory Address
Register (MAR) and the Memory Buffer Register (MBR).

 MAR contains the address of the memory location that is to be read from or stored

into. MBR contains a copy of the designated memory location specified by the
MAR after a “read”, or the new contents of the memory location prior to a “write”.

The memory controller is hardware that transfers data between the MBR and the
core memory location that address of which is in the MAR.

 The I/O channels may be thought of as separate computer which interpret special

instructions for inputting and outputting information from the memory.

 2 Explain the concept hashing function with a suitable example. 4 M

 Ans Hashing:

1. Hashing is the transformation of a string of characters into usually
shorterfixed- length value or key that represents the original string. Hashing is

used to ndex and retrieve items in a database because it is faster to find
shorter hashed key than to find it using the original value.

2. Binary search algorithms are operated on tabled that are ordered and packed.

Therefore it has to be used in conjunction with sort algorithms which both
ordered and pack the data. So a considerable improvement can be achieved

by inserting elements in a random way. The random entry number K is
generated from the key. If the Kth position is valid, then the new element is

put there; if not then some other cell must be found for the insertion.
3. Here the first problem is to generate a random number from the key. This can

be achieved by dividing a four character keyword by the table length N and

use the remainder. Another method is to treat a keyword as a binary fraction
and multiply it by another binary fraction:

L 1, SYMBOL

M 0, RHO

4. The result is 64 bit product in registers 0 and 1. If RHO is chosen carefully,

the low order 31 bits will be evenly distributed between 0 and 1, and the
second multiplication by N will generate number uniformly distributed over

0…(N-1). This is known as power residue method.

The second problem is the procedure to be followed when the first trial entry

results in a filled position.

This problem can be resolve by using one of the following methods:

Explanation 2

Marks, Example 2
Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 12 of 31

1) Random entry with replacement: A sequence of random numbers is

generated from the keyword. From each of these a number between 1 and N
is formed and the table is probed at that position. Probing are terminated
when a void space is found.

2) Random entry without replacement: this is the same as above expect that
any attempt to probe the same position twice is bypassed.

3) Open addressing: if the first probe gives a position K and that position is
filled, then the next location K+1 is probed and so on until a free position is
found. If the search runs off the bottom of the table, then it is renewed at the

top.

Example:

Consider a table of 17 positions (N=17) in which the following 12 numbers
are to be stored.

19, 13, 05, 27, 01, 26, 31, 16, 02, 09, 11, 21

These items are to be entered in the table at the position defined by the

remainder after division by 17; if that position is filled, then the next

position is examined, etc.

The following table shows progress entry for the 12 items. The column

‘probes to find’ gives the number of probes necessary to find the
corresponding item in the tables; thus it takes 3 probes to find item 09, 2

probes to find item 11 and 1 to find item 26. The column ‘probes to find’
gives the number of probes necessary to determine that the item is not in
the table; thus the search for the number 54 would give an initial position

of 3 and it would take 4 probes to find that the item is not present.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 13 of 31

 3 List four Limitations of Syntax Analyser. 4 M

 Ans
Limitations of Syntax Analyzers

1) It cannot determine if a token is valid,
2) It cannot determine if a token is declared before it is being used,

3) It cannot determine if a token is initialized before it is being used,
4) It cannot determine if an operation performed on a token type is valid or not.

Any four
limitations 1 Mark
each

 4 Differentiate between relocating loader and direct linking loader. 4 M

 Ans Relocating loaders (BSS) Direct linking loaders

Provides multiple procedure segments,
but only one data segment.

Provides multiple procedure segments
and multiple data segments.

Provides flexible intersegment

referencing ability but does not
facilitate access to the data segments

that can be shared.

In this type, the assembler produces

four types of cards in the object deck:
ESD, TXT, RLD, END

The transfer vector linkage is only
useful for transfers, and is not well

suited for loading or storing external

The RLD card facilitate both relocation
and linking information

Any correct 4
points : 4 marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 14 of 31

data

The transfer vector increases the size of

the object program in memory

No extra memory required for keeping

linking in the object program.

 5 Apply bottom-up parsing on given input string a+b*c with production rules

S  E

E  E + T

E  E * T

E  T

T  id

4 M

 Ans SE

 EE+T

 EE*T

 ET

 Tid

 a + b * c

 id + id * id

 id + T * id

 T + T * id

 E + T * id

 E * id

 E + T

 E

 S

for parsing 2

marks, Production
rules: 2 marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 15 of 31

 S

 E

 E T

 E T

 T

 id

 id id

 a + b * c

4 a Attempt any THREE : 12 M

 1 Differentiate between static binders and dynamic binders. 4 M

 Ans Static binders Dynamic binders

In static binders a specific core

allocation of a program is performed at

the time that the subroutines are bound

together.

In dynamic binders the binding will

be performed only when an

instruction is encountered that

requires the linkage.

It is called as “core image module‟ and

the corresponding binder is also called

a core image builder.

It is called as “Linkage editor‟.

It does not keep track of relocation

information

It keeps track of the relocation

information so that the resulting load

module can be further relocated and

loaded anywhere in the core.

The module loader performs allocation

and loading.

In this case the module loader must

perform additional allocation and

relocation as well as loading.

Any correct 4

points : 4 marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 16 of 31

Relatively simple and fast Relatively complex.

 2 Write rules for converting arithmetic statements into parse tree? Convert the

following statement into parse tree

COST = RATE*(START - FINISH) + 2 * RATE * (START - FINISH)-100.

4 M

 Ans The rules for converting arithmetic statements into parse tree are:

1. Any variable is a terminal node of the tree

2. For every operator, construct a binary tree (in order dictated by the rules of

algebra), whose left branch is a tree for operand 1, and right branch is a

tree for operand 2.

Parse Tree For following Statement

COST = RATE*(START - FINISH) + 2 * RATE * (START - FINISH)-100.

Rules : 1 Mark

Parse tree : 3
Marks

 3 What is loop invariant? State problems that need to be solved by loop invariant. 4 M

 Ans  A loop invariant is a property of a program loop that is true before (and
after) each iteration.

 It is a logical assertion, sometimes checked within the code by an assertion
call. Knowing its invariant(s) is essential in understanding the effect of a

loop.

 If computation within a loop depends on a variable that does not change

within that loop, then computation may be moved outside the loop.

 This requires a reordering of a part of the matrix.

There are 3 general problems that need to be solved in an algorithm.

1. Recognition of invariant computation.

2. Discovering where to move the invariant computation.

Explanation 2

Marks,

Any 2 problems : 2

Marks(1 Mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 17 of 31

3. Moving the invariant computation.

 4 Explain the concept and types of top down parser. 4 M

 Ans When the parser starts constructing the parse tree from the start symbol and then

tries to transform the start symbol to the input, it is called top-down parsing.

 Recursive descent parsing: It is a common form of top-down parsing. It is

called recursive as it uses recursive procedures to process the input.

Recursive descent parsing suffers from backtracking.

 Backtracking: It means, if one derivation of a production fails, the syntax

analyzer restarts the process using different rules of same production. This

technique may process the input string more than once to determine the

right production.

Recursive Descent Parsing: Recursive descent is a top-down parsing technique

that constructs the parse tree from the top and the input is read from left to right. It

uses procedures for every terminal and non-terminal entity. This parsing technique

recursively parses the input to make a parse tree, which may or may not require

backtracking. But the grammar associated with it (if not left factored) cannot avoid

backtracking. A form of recursive-descent parsing that does not require any back-

tracking is known as predictive parsing. This parsing technique is regarded recursive

as it uses context-free grammar which is recursive in nature. Back-tracking: Top-

down parsers start from the root node (start symbol) and match the input string

against the production rules to replace them (if matched).

 The following example of CFG:

S →rXd|rZd

X →oa|ea

Explanation :2

Marks,Types: 2

Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 18 of 31

Z →ai

For an input string: read, a top-down parser, will behave like this: It will start with

S from the production rules and will match its yield to the left-most letter of the

input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the top-down

parser advances to the next input letter (i.e. ‘e’). The parser tries to expand non-

terminal ‘X’ and checks its production from the left (X → oa). It does not match

with the next input symbol. So the top-down parser backtracks to obtain the next

production rule of X, (X → ea). Now the parser matches all the input letters in an

ordered manner. The string is accepted.

Predictive Parser: Predictive parser is a recursive descent parser, which has the

capability to predict which production is to be used to replace the input string. The

predictive parser does not suffer from backtracking. To accomplish its tasks; the

predictive parser uses a look-ahead pointer, which points to the next input symbols.

To make the parser back-tracking free, the predictive parser puts some constraints on

the grammar and accepts only a class of grammar known as LL(k) grammar.

Predictive parsing uses a stack and a parsing table to parse the input and generate a

parse tree. Both the stack and the input contains an end symbol $to denote that the

stack is empty and the input is consumed. The parser refers to the parsing table to

take any decision on the input and stack element combination.

LL Parser: An LL Parser accepts LL grammar. LL grammar is a subset of context-

free grammar but with some restrictions to get the simplified version, in order to

achieve easy implementation. LL grammar can be implemented by means of both

algorithms namely, recursive-descent or table-driven. LL parser is denoted as LL(k).

The first L in LL(k) is parsing the input from left to right, the second L in LL(k)

stands for left-most derivation and k itself represents the number of look ahead.

Generally k = 1, so LL(k) may also be written as LL(1).

 b Attempt any ONE : 6 M

 1 Explain four function performed by macro processor. 6 M

 Ans The 4 basic task of Macro processor is as follows:-

1) Recognize the macro definitions.

2) Save the Macro definition.

3) Recognize the Macro calls.

4) Perform Macro Expansion.

 1) Recognize the Macro definitions:- A microprocessor must recognize macro

definitions identified by the MACRO and MEND pseudo-ops. When MACROS and

MENDS are nested, the macro processor must recognize the nesting and correctly

List 2 Marks

Explanation of

Each point 4

Marks (1 Mark

Each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 19 of 31

match the last or outer MEND with the first MACRO.

 2) Save the Macro definition:- The processor must store the macro instruction

definitions which it will need for expanding macro calls.

 3) Recognize the Macro calls:- The processor must recognize macro call that

appear as operation mnemonics. This suggests that macro names be handled as a

type of opcode.

 4) Perform Macro Expansion:- The processor must substitute for macro

definition arguments the corresponding arguments from a macro call, the resulting

symbolic text is then substituted for the macro call.

 2 Compare top down and bottom up parser. 6 M

 Ans Sr.

No.

Top – down parsing Bottom up parsing

1 It is easy to implement It is efficient parsing method

2 It can be done using recursive

decent or LL(1) parsing

method

It is a table driven method and

can be done using shift reduce,

SLR, LR or LALR parsing

method

3 The parse tree is constructed

from root to leaves

The parse tree is constructed

from leaves to root

4 In LL(1) parsing the input is

scanned from left to right and

left most derivation is carried

out

In LR parser the input is scanned

from left to right and rightmost

derivation in reverse is followed

5 It cannot handle left recursion The left recursive grammar is

handled by this parser

6 It is implemented using

recursive routines

It is a table driven method

7 It is applicable to small class of

grammar

It is applicable to large class of

grammar

Any 6 Difference:

1 Mark each.

5 Attempt any TWO : 16 M

 1
Explain direct linking loader scheme and format of cards it use.

8 M

 Ans Direct linking loader scheme

 It is Relocatable type of loader.

 It has advantage of allowing programmer with multiple procedure segments

DLL Explanation 2

Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 20 of 31

and giving them complete freedom of referring data contained in some other
segment.

 Input to the loader is set of object programs to be linked together

 This provides flexible Intersegment Referencing, for doing all this, DLL

required following modules.

ESD-External Symbol Directory

TXT-Actual assembled program

RLD-Relocation and Linkage directory module

END-End module

ESD :

There are four sections of the object deck for a direct linking loader.

The ESD card the information necessary to build the external symbol. The external

symbols are symbols that can be referred beyond the subroutine level. The normal

labels in the source program are used only by the assembler.

The ESD card contains the information necessary to build the external symbol. The

external symbols are symbols that can be referred beyond the subroutine level. The

normal labels in the source program are used only

ESD card format:

TXT :

The TXT card contains the blocks of data and the relative address at which data is

Format of Card :6

Marks (1½ Marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 21 of 31

to be placed. Once the loader has decided where to load the program, it adds the

Program Load Address (PLA) to relative address. The data on the TXT card may be

instruction, non-related data or initial values of address constants.

TXT card format

RLD:

The RLD cards contain the following information 1. The location and length of each

address constant that needs to be changed for relocation or linking. 2. The external

symbol by which the address constant should be modified. 3. The operation to be

performed.

RLD card format :

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 22 of 31

END:

The END card specifies the end of the object deck.

END card format

 2 Write any four optimization techniques uses by compiler. 8 M

 Ans The possible algorithm for four optimization techniques are as follows:-

1) Elimination of common sub expression

2) Compile time compute.

3) Boolean expression optimization.

4) Move invariant computations outside of loops.

1) Elimination of common sub expression

The elimination of duplicate matrix entries can result in a more can use and

efficient object program. The common subexpression must be identical and must

be in the same statement.

i. The elimination algorithm is as follows:-
ii. Place the matrix in a form so that common subexpression can be recognized.

iii. Recognize two sub expressions as being equivalent.
iv. Eliminate one of them.

v. After the rest of the matrix to reflect the elimination of this entry.

Each technique: 2
marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 23 of 31

2) Compile time compute.

• Doing computation involving constants at compile time save both space and
execution time for the object program.

• The algorithm for this optimization is as follows:-
i. Scan the matrix.
ii. Look for operators, both of whose operands were literals.

iii. When it found such an operation it would evaluate it, create new literal,
delete old line.

iv. Replace all references to it with the uniform symbol for the new literal.
v. Continue scanning the matrix for more possible computation.

\

 For e.g.-

 A = 2 *276 / 92 * B

• The compile time computation would be

 Matrix Before optimization

M1 * 2 276

 M2 / M1 92

M3 * M2 B

M4 = A M3

 Matrix After optimization

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 24 of 31

M1 * 2 276

M2 / M1 92

M3 * 6 B

M4 = A M3

3) Boolean expression optimization.

 We may use the properties of Boolean expression to shorten their

computation.
 e.g. In a statement

 If a OR b Or c,

 Then …… when a, b & c are expression rather than generate code that will

always test each expression a, b, c. We generate code so that if a computed as
true, then b OR c is not computed, and similarly for b.

4) Move invariant computations outside of loops.

• If computation within a loop depends on a variable that does not change
within that loop, then computation may be moved outside the loop.

• This requires a reordering of a part of the matrix. There are 3 general
problems that need to be solved in an algorithm.

 1. Recognition of invariant computation.

 2. Discovering where to move the invariant computation.

 3. Moving the invariant computation.

 3 Explain radix sort with example. 8 M

 Ans  In computer science, radix sort is a non-comparative integer sorting

algorithm that sorts data with integer keys by grouping keys by the individual
digits which share the same significant position and value. A positional
notation is required, but because integers can represent strings of characters

(e.g., names or dates) and specially formatted floating point numbers, radix
sort is not limited to integers.

 Most digital computers internally represent all of their data as electronic
representations of binary numbers, so processing the digits of integer

representations by groups of binary digit representations is most convenient.
Radix sorts can be implemented to start at either the most significant digit

Explanation: 4

Marks,

Example : 4 Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 25 of 31

(MSD) or least significant digit (LSD). For example, when sorting the
number 1234 into a list, one could start with the 1 or the 4.

Radix Sort is not comparison based algorithm. It has the time complexity of O(nk)

where n is the size of input array.

and k is no.of digits in largest number

Algorithm:

For each digit where varies from the least significant digit to the most significant

digit of a number

 Sort input array using radix sort algorithm according to i th digit.

Example: Assume the input array is:

10,21,17,34,44,11,654,123

Based on the algorithm, we will sort the input array according to the one's digit

(least significant digit).

0: 10

1: 21 11

2:

3: 123

4: 34 44 654

5:

6:

7: 17

8:

9:

So, the array becomes in first pass 10,21,11,123,24,44,654,17

Now, we'll sort according to the ten's digit:

0:

1: 10 11 17

2: 21 123

3: 34

4: 44

5: 654

6:

7:

8:

9:

Now, the array becomes in second pass : 10,11,17,21,123,34,44,654

Finally , we sort according to the hundred's digit (most significant digit):

0: 010 011 017 021 034 044

1: 123

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 26 of 31

2:

3:

4:

5:

6: 654

7:

8:

9:

The array becomes in third pass : 10,11,17,21,34,44,123,654 which is sorted.

6 Attempt any FOUR : 16 M

 1 Describe macro and subroutine. 4 M

 Ans Macro:

The assembly language programmer often finds that certain set of instructions get

repeated often in the code. Instead of repeating the set of instructions the

programmer can take advantage of macro facility where macro is defined as “Single

line abbreviation for group of instructions”. A macro instruction is a notational

convenience

for the programmer, It allows the programmer to write shorthand version of a

program (module programming).

The macro processor replaces each macro invocation with the corresponding

sequence of statements expanding) A macro represents a commonly used group of

statements in the source programming language. The macro processor replaces each

macro instruction with the corresponding group of source language statement, this

is called expanding macros.

Subroutine:

Macro Description

:2 marks,

Subroutine

Description: 2

marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 27 of 31

In computer programming, a subroutine is a sequence of program instructions that
performs a specific task, packaged as a unit. This unit can then be used in programs

wherever that particular task should be performed.
Subprograms may be defined within programs, or separately in libraries that can be

used by many programs. In different programming languages, a subroutine may be
called a procedure, a function, a routine, a method, or a subprogram. The generic
term callable unit is sometimes used.

The name subprogram suggests a subroutine behaves in much the same way as a
computer program that is used as one step in a larger program or another

subprogram. A subroutine is often coded so that it can be started several times and
from several places during one execution of the program, including from other
subroutines, and then branch back (return) to the next instruction after the call, once

the subroutine's task is done. Subroutines are a powerful programming tool, and the
syntax of many programming languages includes support for writing and using

them. Judicious use of subroutines (for example, through the structured
programming approach) will often substantially reduce the cost of developing and
maintaining a large program, while increasing its quality and reliability. Subroutines,

often collected into libraries, are an important mechanism for sharing and trading
software. The discipline of object-oriented programming is based on objects and

methods (which are subroutines attached to these objects or object classes).

 2 Explain interchange sort with example. 4 M

 Ans The interchange sort is almost similar as the bubble sort. In fact some people refer to

the interchange sort as just a different bubble sort. (When they see the source they

even call it a bubble sort instead of its real name interchange sort.)The interchange

sort compares each element of an array and swaps those elements that are not in

their proper position, just like a bubble sort does. The only difference between the

two sorting algorithms is the manner in which they compare the elements. The

interchange sort compares the first element with each element of the array, making a

swap where is necessary.

This sorting algorithm is comparison-based algorithm in which each pair of adjacent

elements is compared and the elements are swapped if they are not in order.

This algorithm is not suitable for large data sets as its average and worst case

complexity are of Ο(n2) where n is the number of items.

Example:

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're

keeping it short and precise.

Bubble sort starts with very first two elements, comparing them to check which one

Explanation 2M

Example 2M

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 28 of 31

is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we

compare 33 with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

We swap these values. We find that we have reached the end of the array. After one

iteration, the array should look like this −

To be precise, we are now showing how an array should look like after each

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 29 of 31

iteration. After the second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely

sorted.

 3 For the following pseudo-ops(pseudo opcodes), write suitable example:

i)ENTRY

ii)EXTRN

4 M

 Ans It is used to direct or to suggest loader that data followed by ENTRY are defined

in this program but they are referenced in another program.

Similarly subroutine followed by EXTRN is called in main program but its

definition is written outside the main program as subroutine.

For example: the following sequence of instruction may be a simple calling

sequence

to another program.

ENTRY Example:

A START

 ENTRY B1, B2, B3……………….These symbol list are referenced in

another program.

B1…………..

B2…………..

B3…………..

Explanation of

Entry 2 Marks.

Explanation of

EXTERN 2 Marks

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 30 of 31

END

EXTRN Example

MAIN START

EXTRN SUBROUT

.................

.................

................

L 15=A(SUBROUT)...................................CALL SUBROUT

BALR 14,15

..

..

..

..

END

SUBROUT START

 USING *, 15

 .

 .

 .

 BR 15

 END

The above sequence of instructions first declares SUBROUT as an external variable,

that is a variable referenced but not defined in this program. The load(L) instruction

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)
 (ISO/IEC - 27001 - 2013 Certified)

__

Page 31 of 31

loads the address of that variable in to register 15.

 4 Explain storage allocation phase of compiler. 4 M

 Ans The purpose of this phase is to:

1. Assign storage to all variables referenced in the source program.

2. Assign storage to all temporary locations that are necessary for intermediate
code generation.

3. Assign storage to literals.

4. Ensure that the storage is allocated and appropriate locations are initialized

It makes entries in the matrix that allow code generation to create code that allocates

dynamic storage, and that also allow the assembly phase to reserve the proper

amounts of STATIC storage.

Explanation: 4

Marks

 5 State functions of relocating loader. 4 M

 Ans Functions of relocating loader.

 To avoid possible reassembling of subroutines when a single subroutine is

changed and to perform the tasks of allocation and linking for the
programmer.

 It allows many procedure segments but only one data segment. The
assembler assembles each procedure segment independently and passes to

the loader text and information for relocation and intersegment reference.

 The relocating loader processes procedure segments but does not facilitates
access to data segment which can be shared.

 The four functions of loader (allocation, linking, relocation and loading) are
all performed by the relocating loader.

 E.g.: BSS (Binary Symbolic Subroutine) loader used in IBM 7094, IBM
1130 and in UNIVAC 1108.

Any 4 Functions, 1

Mark each.

